Artificial intelligence is already a part of everyday life

In this section we’ll explore a wide range of AI solutions by looking at practical examples.

In recent years, AI has appeared in the headlines and sparked debate from many different angles. However, it’s useful to remember that most of the stories that make it into the news are unusual and don’t involve everyday solutions, where AI is almost imperceptible. Developers in the field have sometimes reiterated that when AI becomes part of software, it’s no longer even called AI – it’s just software.

The following examples illustrate some practical AI solutions. We have divided the examples into three categories: natural language processing, machine vision, and numerical solutions.

A) Natural language processing (NLP)

Written or spoken language is at the core of NLP artificial intelligence solutions. Examples include:


You’ve probably already come across chatbots on corporate websites. They are able to answer customer questions or ask questions (with varying degrees of success). Chatbots are among the most common AI solutions that are directly visible to users.

A chatbot could be seen as smart because it knows how to chat with people. However, a chatbot doesn't actually understand the questions it’s answering, even though it might be able to provide a suitable answer. Also, not all chatbots are based on AI. Instead, some have pre-programmed chat paths, making it difficult for users to know which type of chatbot they are interacting with.

Language translation and speech recognition

AI solutions that translate language have rapidly become widespread. For example, Google Translate can immediately translate spoken or written text into the language of your choice.

Speech recognition is one of the key aspects of NLP. In some online stores, it allows customers to make purchases – for example, they can say “one nonfat milk” and the AI solution will interpret the content of their speech and add the product to a shopping cart.

NLP also makes it possible to check the grammar of a passage of text, and commercial applications are available for this purpose.

Interpretation of customer feedback

Companies are very interested in customer feedback, and a useful AI solution for this purpose is sentiment analysis. Sentiment analysis reveals the tone of customer feedback, from positive to negative.

Sentiment analysis is also suitable for audio recordings of customer service interactions. In this case, the AI solution translates the speech into text before analyzing it.

B) Machine vision

Machine vision consists of image and video processing, and there are numerous uses for the technology. Here are a few examples of machine vision applications:

Face and object recognition

Common machine vision solutions include a mobile phone's face recognition function and automatic image tagging on social media. With these, machine vision can identify objects that are visible in images and videos such as people, animals, and objects.

The example in the figure illustrates machine vision in action.

Machine vision recognizes a person, a helmet, and other objects
Machine vision recognizes a person, a helmet, and other objects

The AI solution has identified objects inside the rectangles in the image. The number (confidence) on the side of the rectangle, which uses a scale from 0 to 1, tells you how confident the AI solution is in its identification of the object.

Editing image and video content

AI can be used to edit visual content. Typical examples of this are deepfake videos, stylized images, or even the rejuvenation of older actors in a film. Such AI solutions are making it increasingly difficult to distinguish real content from fake content.

Quality control

One of the most common industrial uses of AI is the identification of defective products through machine vision. The object to be identified can be a wooden, metal, or paper surface, a bottle label, a weld seam, taping – really any object that provides images for AI to analyze. These solutions are popular because AI solutions never get tired and can always focus fully on the task at hand.

C) Numerical AI solutions

The previous examples relate to the processing of non-structured data like text, audio, image, or video. However, AI solutions are also able to work with structured or tabular data. These applications are often less general purpose than the solutions presented above, and as such they tend to be organization-specific. Some examples include:

Forecasting sales

Many retailers use AI to predict sales. With as many as tens of thousands of products on offer, it would be difficult for these companies to predict product order volumes without an automated system.

Automatic loan decisions

A loan decision can be obtained online almost immediately once the applicant has provided the necessary information. An AI solution uses this information to assess the applicant's creditworthiness and derive the level of risk involved in order to determine the interest rate of the loan offered.

Customer churn analysis

Telecom operators and insurance companies often use AI to perform customer churn analysis. This helps them predict which customers are likely to leave in the near future so that they can, for example, make offers to retain their loyalty.


AI is useful for setting prices. A good example of this is the automatic pricing of used cars and homes, where AI can use background information on an item for sale to predict its probable asking price.

Customer segmentation

In customer segmentation, AI groups customers into segments based on purchasing behavior. These segments could be like “families with children” or “sports fans”.

Customer segmentation
Customer segmentation

With the help of AI, we can carry out customer segmentation based on customers’ purchasing behavior. For example, the grouping with a purple background could consist of customers whose shopping carts often contain pet food.

We have seen some examples of solutions that use AI above, but what exactly is AI? We’ll look at that in more detail in the next section.

Next section
III. What are artificial intelligence and machine learning?